第30天了終於
無Buffter版會快一點
參考
Non-maximum suppression threshold
基本的 車子,機車,人物等形狀可以辨識
#For CV2 > 4.5.1
import cv2, queue, threading, time
print(cv2.__version__)
import numpy as np
classesFile = "YOLOweight/coco.names"
modelConfiguration = "YOLOweight/yolov4.cfg"
modelWeights = "YOLOweight/yolov4.weights"
# Initialize the parameters
confThreshold = 0.5 #Confidence threshold
nmsThreshold = 0.4 #Non-maximum suppression threshold,機率門檻,0.4以下不顯示在畫面
inpWidth = 640 #Width of network's input image,改为320*320更快
inpHeight = 480 #Height of network's input image,改为608*608更准
# bufferless VideoCapture
class VideoCapture:
def __init__(self, name):
self.cap = cv2.VideoCapture(name)
self.q = queue.Queue()
t = threading.Thread(target=self._reader)
t.daemon = True
t.start()
# read frames as soon as they are available, keeping only most recent one
def _reader(self):
while True:
ret, frame = self.cap.read()
if not ret:
break
if not self.q.empty():
try:
self.q.get_nowait() # discard previous (unprocessed) frame
except queue.Empty:
pass
self.q.put(frame)
def read(self):
return self.q.get()
target=0 #"https://cctv6.kctmc.nat.gov.tw/1dd04532/"
cap = VideoCapture(target)
# Load names of classes
classes = None
with open(classesFile, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
# Give the configuration and weight files for the model and load the network using them.
net = cv2.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
# Get the names of the output layers
def getOutputsNames(net):
# Get the names of all the layers in the network
layersNames = net.getLayerNames()
# Get the names of the output layers, i.e. the layers with unconnected outputs
return [layersNames[i - 1] for i in net.getUnconnectedOutLayers()]
# Draw the predicted bounding box
def drawPred(classId, conf, left, top, right, bottom):
# Draw a bounding box.
cv2.rectangle(frame, (left, top), (right, bottom), (255, 178, 50), 3)
label = '%.2f' % conf
# Get the label for the class name and its confidence
if classes:
assert(classId < len(classes))
label = '%s:%s' % (classes[classId], label)
#Display the label at the top of the bounding box
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
cv2.rectangle(frame, (left, top - round(1.5*labelSize[1])), (left + round(1.5*labelSize[0]), top + baseLine), (255, 255, 255), cv2.FILLED)
cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0,0,0), 1)
# Remove the bounding boxes with low confidence using non-maxima suppression
def postprocess(frame, outs):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
classIds = []
confidences = []
boxes = []
# Scan through all the bounding boxes output from the network and keep only the
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
classIds = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
center_x = int(detection[0] * frameWidth)
center_y = int(detection[1] * frameHeight)
width = int(detection[2] * frameWidth)
height = int(detection[3] * frameHeight)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
# Perform non maximum suppression to eliminate redundant overlapping boxes with
# lower confidences.
indices = cv2.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
for i in indices:
i = i
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
drawPred(classIds[i], confidences[i], left, top, left + width, top + height)
#---------可在這裡做判斷----------------
while True:
# get frame from the video
frame = cap.read()
# Create a 4D blob from a frame.
blob = cv2.dnn.blobFromImage(frame, 1/255, (inpWidth, inpHeight), [0,0,0], 1, crop=False)
# Sets the input to the network
net.setInput(blob)
# Runs the forward pass to get output of the output layers
outs = net.forward(getOutputsNames(net))
# Remove the bounding boxes with low confidence
postprocess(frame, outs)
# Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
cv2.putText(frame, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
cv2.imshow("frame", frame)
key=cv2.waitKey(1) #等候使用者按鍵盤指令
if key==ord('a'): #a拍照
cv2.imwrite('webcam.jpg',frame) #拍照
if key==ord('q'): #q退出
break